

Circulateur de Chauffage SALMSON PRIUX MASTER 50-60/240mm

Circulateur de chauffage SALMSON 230 V Monophasé Référence: 2120688 Entraxe: 240mm Raccordement: DN50mm Hauteur Manométrique Totale: 8m

Marque: SALMSON Référence: 2120688

Prix: 1,806.84€ HT

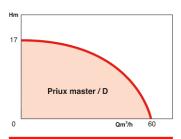
Critères associés :

Type de fluide : Chauffage

Environnement : Collectivité, Habitat (Monophasée)

Type de produit : Circulateurs

Circulateur de Chauffage SALMSON PRIUX MASTER 50-60/240mm


PLAGES D'UTILISATION

Débits jusqu'à :	60 m³/h
Hauteurs mano. jusqu'à:	17 m CE
Pression de service maxi:	10 baı
Plage de température :	-20° à +110°C
Température ambiante maxi:	+40°C
DN orifices:	25 à 100
EEI pompe simple:	≤0,20
EEI pompe double:	≤0,23

PRIUX MASTER

CIRCULATEURS HAUT RENDEMENT SIMPLES ET DOUBLES GAMME STANDARD

Chauffage - Climatisation

APPLICATIONS

- Circulation accélérée d'eau de chauffage de refroidissement ou d'eau glacée avec optimisation de point de fonctionnement du circulateur
- Chauffage central
- · Chauffage urbain
- · Installations collectives ou industrielles
- · Circuits de refroidissement
- · Circuits de climatisation
- Installations neuves ou anciennes (rénovation), extensions

Circulateurs recommandés pour les installations équipées de robinets thermostatiques.

AVANTAGES

- · Economies d'énergie
- · Grande polyvalence
- · Maîtrise du bruit
- Fiabilité
- Ergonomie

CONCEPTION

· Partie hydraulique

- Corps simples ou doubles à union ou à brides. Tracé interne de la volute et roue en 3D pour une optimisation maximale des performances hydrauliques.
- Un joint de roue entre corps de pompe et roue améliore encore les performances en limitant le recyclage interne du fluide.
- Le corps de pompe est entièrement revêtu par traitement cataphorèse pour résister à la corrosion.

- Monophasé 230 V 50/60 Hz
- Moteur à rotor noyé, coussinets lubrifiés par le fluide pompé.

Moteur synchrone à technologie E.C.M. (Electronically Commutated Motor), équipé d'un rotor à aimants permanents. Le champ magnétique tournant du stator est engendré par une commutation électronique des bobines. Ce champ tournant crée un couple continu par attraction des pôles magnétiques opposés du rotor, en contrôlant la position de celui-ci (moteur synchrone). Ceci assure pour le moteur des performances optimales, quelle que soit sa vitesse. La séparation entre rotor noyé et bobinage est assurée par une chemise en composite, donc parfaitement amagnétique, pour réduire les pertes moteur.

SXE avec moteur AC

800 à 4 800 tr/mn Vitesse Tension réseau: mono 230 V ± 10 % 50 Hz - 60 Hz Fréquence Classe d'isolation: 155 (F) Indice de protection: IPX4D Conformité CEM: EN 61800-3 émission EN 61000-6-3 immunité EN 61000-6-2

· Différentiel de protection (FI)

Les différentiels de protection FI de modèles «tous courants» suivant EN 61008-1 sont admis. Ces disioncteurs différentiels sont identifiables par \bigotimes ou \bigotimes ===

AVANTAGES

· Economies d'énergie

Circulateurs à haut rendement, avec optimisation du point de fonctionnement. Economies d'énergie jusqu'à 80 % par rapport à un circulateur traditionnel.

· Grande polyvalence

Ces circulateurs s'adaptent à tous types d'installation de chauffage, de climatisation et de réfrigération. Ils couvrent une plage de température du fluide de -20° C à +110° C en version standard.

Maîtrise du bruit

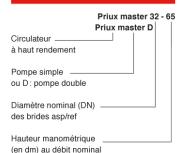
Suppression du sifflement et des bruits hydrauliques au niveau des robinets thermostatiques Adaptation automatique des performances aux besoins de l'installation.

Fiabilité

Le fonctionnement est entièrement automatique, ne nécessite ni purge ni entretien. Un double système de filtre empêche l'introduction de particules solides dans la chambre rotorique. Un joint tournant entre la roue et le flasque limite les échanges d'eau avec le moteur au juste nécessaire.

Ergonomie

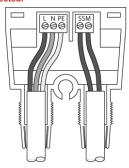
Le module de commande du Priux master est librement accessible. Un seul bouton permet la sélection du mode de régulation et le réglage de la consigne de pression différentielle. Un connecteur est utilisé pour le raccordement électrique. Il est possible de retirer le connecteur du module et de l'ouvrir. Le raccordement électrique est ainsi effectué de façon simplifiée et sûre.


Brides percées permettant l'installation d'un Kit de mesure de pression différentielle

CONSTRUCTION DE BASE

Pièces principales	Matériau
Corno do nomos	EN GJL 250
Corps de pompe	EN GJL 200 pour DN 25-32
	Plastique (PPS) renforcé de fibre
Roue	de verre
	PPE pour DN 25-32
Arbre	Acier Inox (X46 - Cr13)
Coussinets	Carbone imprégné métal

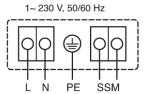
ue 3D vacuation condensat Joint tournant Corps 3D

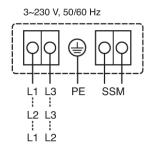

IDENTIFICATION

RACCORDEMENTS

Le raccordement électrique se fait au niveau du connecteur qui est détachable du module électronique.

· Connecteur

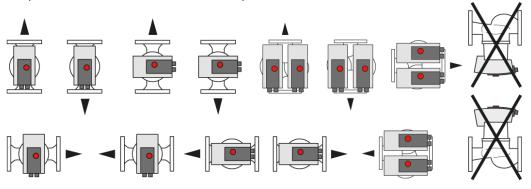

Bornier


L – N: raccordement au réseau, courant mono 230 V - 50 Hz-60 Hz

PE: mise à la terre

contact sec pour report de défaut (normal fermé, ouverture sur défaut). Charge maxi: 1 A - 250 V - AC SSM:

· Raccordement réseau



Raccordement à un réseau 1~230V

Ou entre 2 phases d'un réseau 3~230V

MONTAGES POSSIBLES

Sur tuyauteries verticales ou horizontales, l'arbre-moteur doit toujours être horizontal.

PRINCIPE DE FONCTIONNEMENT

Les besoins en chauffage ou en climatisation d'un bâtiment varient entre le jour et la nuit mais également dans la journée selon les changements de température extérieure, etc., et même d'un endroit du bâtiment à un autre au gré des fermetures des robinets thermostatiques ou des vannes 2 voies. Le circulateur autorégulé permet en fonction de la perte de charge du réseau d'adapter automatiquement sa vitesse de rotation afin de conserver une consommation électrique minimale (technologie E.C.M.) et de maintenir un niveau sonore de fonctionnement des plus bas. L'ajustement des caractéristiques du circulateur s'effectue automatiquement en fonction des besoins thermiques ou frigoriques de l'installation.

· Réglages manuels

Paramétrage des fonctions de base, soit: mode de pilotage ΔP constant, ΔP variable, réglage de la consigne de pression et réglage de la vitesse.

· Pression constante

Avec ce mode de régulation, l'électronique maintient la pression différentielle du circulateur constante quel que soit le débit, en fonction de la consigne de pression prédéfinie.

· Pression variable

Avec ce mode de régulation, l'électronique permet de réduire la pression différentielle (hauteur manométrique) en cas de réduction du débit, selon la consigne de pression différentielle prédéfinie.

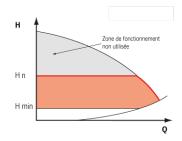
· Réglage de la vitesse

La vitesse de rotation peut être réglée manuellement sur 3 valeurs constantes prédéfinies (selon modèles).

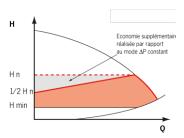
· Télésurveillance (SSM)

De plus, un contact sec (à ouverture sur défaut) permet la télésurveillance de tout incident de fonctionnement (par ex. par GTC).

· Circulateurs doubles (ou deux simples installés en parallèle)


Le mode de fonctionnement Normal/Secours est autorisé.

Pour une permutation automatique en cas de défaut, il faut installer un coffret de commande correspondant et utiliser le report de défaut disponible sur la pompe (SSM).


La marche parallèle n'est pas autorisée parce que cela peut affecter le comportement de service des pompes.

COURBES DE PRINCIPE DE FONCTIONNEMENT

Fonctionnement en ΔP constant \blacksquare

Fonctionnement en ΔP variable

L'électronique maintient constante, via le régime de débit autorisé, la pression différentielle produite par la pompe à la valeur de pression différentielle de consigne Hn, jusqu'à la courbe de fonctionnement caractéristique maximale.

L'électronique modifie de façon linéaire entre Hn et 1/2 Hn la valeur de pression différentielle de consigne à respecter par la pompe. La valeur de pression différentielle de consigne H augmente ou diminue avec le débit demandé.

TABLE DE FONCTIONS

	Priux master	Priux master-D
Modes de fonctionnement		
Vitesse fixe (n = constant)	•	•
Δp-c pour pression différentielle constante	•	•
Δp-v pour pression différentielle variable	•	•
Fonctions manuelles		
Réglage du mode de fonctionnement	•	•
Réglage de la consigne de pression différentielle		·
Réglage vitesse de rotation (ajustement manuel)	3 valeurs prédéfinies	3 valeurs prédéfinies
Fonctions automatiques		
Adaptation progressive automatique suivant le mode de fonctionnement		•
Déblocage automatique		
Démarrage progressif		
Protection moteur avec relais intégré		
Signalisation et affichage		
Signalisation des défauts centralisée (contact sec à ouverture)		
Voyant de signalisation		
Afficheur LED 7 segments pour l'indication de la consigne de pression et des codes défauts.		
Pilotage pompes doubles (pompes doubles ou 2 x pompes simples)		
Marche principale/secours	Permutation à prévoir en armoire	Permutation à prévoir en armoire
Marche parallèle	_	-
Exécutions/étendue de la fourniture		
Méplats pour maintien du corps de pompe	Pompes à raccord à visser avec P2 < 200 W	-
Clapet double dans le corps de pompe	_	
Entrée câble sur les deux côtés	_	_
Système de dégazage intégré pour purgeur automatique Rp 3/8	-	-
Emplacement réservé pour ajout d'accessoire optionnel modules IF Salmson	_	-
Moteur imblocable	_	_
Joints pour raccords à visser ou brides inclus (séparés)		
Notice de montage et de mise en service incluse		
Coquille d'isolation	Accessoire en option	_
Boulons et rondelles pour écrous de brides (pour diamètres de raccordement DN 32 – DN 100)		
· · · · · · · · · · · · · · · · · · ·		

^{• =} fourni ; — = non fourni

CARACTÉRISTIQUES TECHN	IQU	ES	- P	RIU	IX N	IAS	TE	R												
	25-55	25-65	25-90	32-55	32-65	32-90	40-30	40-60	40-80	40-110	20-60	20-20	20-80	50-110	65-80	65-90	65-110	80-40	06-08	100-90
Fluides admissibles (autres fluides sur demande)																				
Eau de chauffage (suivant VDI 2035)																				
Mélange eau/glycol (max. 50%; vérifier les caractéristiques techniques pour mélange > 20 %)																				
Eau potable et alimentaire suivant TrinkwV 2001										-	-									
Performances																				
Hauteur manométrique max. [m]	7	10	12	7	10	12	5	8	12	17	8	9	11	16	9	11	17	7	13	13
Débit max. [m³/h]	7	8	11	7	8	11	11	14	19	29	14	24	28	44	28	40	56	45	63	63
Plage d'utilisation autorisée																				
Plage de température pour le génie climatique pour température ambiante max. +40 °C [°C]										-20 à	+110									
Plage de température pour circuits d'eau potable - pour température ambiante																				
max. +40 °C [°C] - pour température ambiante max. +40 °C sur courte											_									
période 2 h [°C] Dureté d'eau max. sur réseau d'eau potable [°d]										-	_									
Exécution standard à pression nominale, p max [bar]										6/	10									
Raccordement hydraulique																				
Raccord à visser Rp	1	1	1	1 1/4	1 1/4	1 1/4														
Diamètre nominal bride DN							40	40	40	40	50	50	50	50	65	65	65	80	80	100
Bride pour contre-bride PN 10, exécution standard	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
Bride combinée PN 6/10 pour contre-brides PN 6 et PN 16, exécution standard	-	-	-	-	-	-												-	-	-
Raccordement électrique																				
Alimentation 1~ [V], exécution standard										2	30									
Alimentation 3~ [V], exécution standard										2	30									
Alimentation 3~ [V], avec insert de permutation optionnel										-	_									
Fréquence du réseau [Hz]										50	/60									
Moteur/Electronique																				
Compatibilité électromagnétique										EN 61	1800-3	3								
Rayonnement perturbateur en émission									E	EN 61	000-6-	3								
Résistance aux parasites en réception									E	EN 61	000-6-	2								
Electronique de puissance									Varia	teur d	e fréqu	uence								
Indice de protection										IP)	(4D									

Classe d'isolation

- = fourni ; — = non fourni

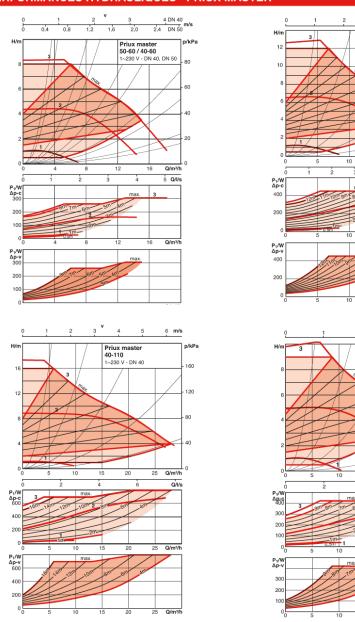
PERFORMANCES HYDRAULIQUES - PRIUX MASTER

v 3 4

Priux master 40-80 1~230 V - DN 40 p/kPa

120

60

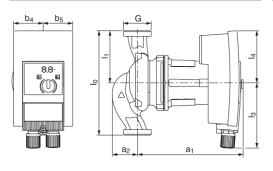

Q/m³/h

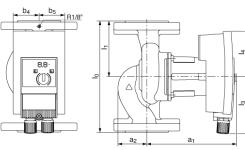
4 m/s

Q/I/s

Q/m³/h

Priux master 50-70 1~230 V - DN 50 6 **Q/l/s**

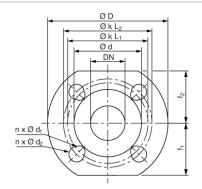

CARAC	TÉRISTIQ	UES ÉLECT	RIQUES - PRI	UX MASTEF	₹		
	Puissance	Vitesse	Puissance absorbée	Intensité à 1~230V	Intensité à 3~230V	Protection moteur	Presse-étoupe
	P2 [W]	n [1/min]	P1 [W]	I [.	A]		
25-55	90	1000-3700	5-120	0,08-1,0	0,08-1,0	intégré	2xM20
25-65	140	1000-4450	5-190	0,08-1,3	0,08-1,3	intégré	2xM20
25-90	200	1000-4800	10-305	0,15-1,33	0,15-1,33	intégré	2xM20
32-55	90	1000-3700	5-120	0,08-1,0	0,08-1,0	intégré	2xM20
32-65	140	1000-4450	5-190	0,08-1,3	0,08-1,3	intégré	2xM20
32-90	200	1000-4800	10-305	0,15-1,33	0,15-1,33	intégré	2xM20
40-30	90	1200-3700	7-120	0,09-1,0	0,09-1,0	intégré	2xM20
40-60	200	1200-4800	10-305	0,15-1,33	0,15-1,33	intégré	2xM20
40-80	450	950-4600	15-550	0,17-2,4	0,17-2,4	intégré	2xM20
40-110	650	800-3500	30-800	0,27-3,50	0,27-3,50	intégré	2xM20
50-60	200	1200-4800	10-305	0,15-1,33	0,15-1,33	intégré	2xM20
50-70	400	950-4100	15-490	0,17-2,15	0,17-2,15	intégré	2xM20
50-80	500	950-4600	15-600	0,17-2,65	0,17-2,65	intégré	2xM20
50-110	1050	800-3300	40-1250	0,30-5,50	0,30-5,50	intégré	2xM20
65-80	500	950-4100	15-600	0,17-2,65	0,17-2,65	intégré	2xM20
65-90	650	800-2800	40-800	0,30-3,50	0,30-3,50	intégré	2xM20
65-110	1200	800-3400	40-1450	0,30-6,40	0,30-6,40	intégré	2xM20
80-40	650	900-2400	40-800	0,30-3,50	0,30-3,50	intégré	2xM20
80-90	1300	930-3300	40-1550	0,30-6,80	0,30-6,80	intégré	2xM20
100-90	1300	930-3300	40-1550	0,30-6,80	0,30-6,80	intégré	2xM20

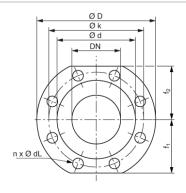

	Puissance	Vitesse	Puissance absorbée	Intensité à 1~230V	Intensité à 3~230V	Protection moteur	Presse-étoupe
	P2 [W]	n [1/min]	P1 [W]	1 [A]		
32-55	90	1000-3700	5-120	0,08-1,0	0,08-1,0	intégré	2xM20
32-90	200	1000-4800	10-305	0,15-1,33	0,15-1,33	intégré	2xM20
40-60	200	1200-4800	10-305	0,15-1,33	0,15-1,33	intégré	2xM20
40-80	450	950-4600	15-550	0,17-2,4	0,17-2,4	intégré	2xM20
40-110	650	800-3500	30-800	0,27-3,50	0,27-3,50	intégré	2xM20
50-70	400	950-4100	15-490	0,17-2,15	0,17-2,15	intégré	2xM20
50-80	500	950-4600	15-600	0,17-2,65	0,17-2,65	intégré	2xM20
50-110	1050	800-3300	40-1250	0,30-5,50	0,30-5,50	intégré	2xM20
65-90	650	800-2800	40-800	0,30-3,50	0,30-3,50	intégré	2xM20
65-110	1200	800-3400	40-1450	0,30-6,40	0,30-6,40	intégré	2xM20
80-40	650	900-2400	40-800	0,30-3,50	0,30-3,50	intégré	2xM20
80-90	1300	930-3300	40-1550	0,30-6,80	0,30-6,80	intégré	2xM20

DIMENSIONS - PRIUX MASTER

Schéma A

Schéma B




	Diamètre Nominal	Raccordement tube	Filetage	a1	a2	b4	b5	10	l1	13	14	Poids	Plan
	DN	Rp	G	mm	mm	mm	mm	mm	mm	mm	mm	kg	-
25-55	_	1	1 1/2	183	44	51	51	180	90	113	90	4,5	Α
25-65	-	1	1 1/2	183	44	51	51	180	90	113	90	4,5	Α
25-90	_	1	1 1/2	201	47	64	64	180	90	135	98	5,3	Α
32-55	_	1 1/4	2	183	44	51	51	180	90	113	90	4,6	Α
32-65	_	1 1/4	2	183	44	51	51	180	90	113	90	4,6	Α
32-90	-	1 1/4	2	201	47	64	64	180	90	135	98	5,4	Α
40-30	40	_	_	178	57	51	51	220	110	113	90	8,6	В
40-60	40	_	_	204	48	64	64	220	110	135	98	9,2	В
40-80	40	_	_	264	64	71	71	250	125	152	109	13	В
40-110	40	_	_	323	62	87	87	250	125	160	169	21	В
50-60	50	_	-	209	46	64	64	240	120	135	98	10,5	В
50-70	50	_	_	267	53	71	71	280	140	152	109	14,2	В
50-80	50	_	_	267	53	71	71	280	140	152	109	14,2	В
50-110	50	_	_	325	66	87	87	340	170	160	169	25	В
65-80	65	_	_	274	57	71	71	280	140	152	109	16,1	В
65-90	65	_	_	334	70	87	87	340	170	160	169	25,8	В
65-110	65	-	_	332	66	87	87	340	170	160	169	27,5	В
80-40	80	_	_	335	84	87	87	360	180	160	169	29	В
80-90	80	-	_	335	84	87	87	360	180	160	169	30,4	В
100-90	100	_	_	345	85	87	87	360	180	160	169	33,4	В

BRIDES - PRIUX MASTER

Schéma C

Schéma D

	Bride	Diamètre nominal	Dimensions bride de la nomne										
	-	DN	D	d	KL1/KL2	Dia. k	n x d1/d2	n x dL	f1	f2	-		
	[-]	[-]		[m	ım]		[pcs. x	mm]	[m	ım]	[-]		
40-30	Bride PN6/10 combiflange (bride PN 16 selon EN 1092-2)	40	150	84	100/110		4 x 14 / 19	-	65	65	С		
40-60	Bride PN6/10 combiflange (bride PN 16 selon EN 1092-2)	40	150	84	100/110	-	4 x 14 / 19	-	65	65	С		
40-80	Bride PN6/10 combiflange (bride PN 16 selon EN 1092-2)	40	150	84	100/110	-	4 x 14 / 19	-	65	65	С		
40-110	Bride PN6/10 combiflange (bride PN 16 selon EN 1092-2)	40	150	84	100/110	-	4 x 14 / 19	-	65	65	С		
50-60	Bride PN6/10 combiflange (bride PN 16 selon EN 1092-2)	50	165	99	110/125	-	4 x 14 / 19	-	70	70	С		
50-70	Bride PN6/10 combiflange (bride PN 16 selon EN 1092-2)	50	165	99	110/125	-	4 x 14 / 19	-	70	70	С		
50-80	Bride PN6/10 combiflange (bride PN 16 selon EN 1092-2)	50	165	99	110/125	-	4 x 14 / 19	-	70	70	С		
50-110	Bride PN6/10 combiflange (bride PN 16 selon EN 1092-2)	50	165	99	110/125	-	4 x 14 / 19	-	70	70	С		
65-80	Bride PN6/10 combiflange (bride PN 16 selon EN 1092-2)	65	185	118	130/145	-	4 x 14 / 19	-	80	80	С		
65-90	Bride PN6/10 combiflange (bride PN 16 selon EN 1092-2)	65	185	118	130/145	-	4 x 14 / 19	-	80	80	С		
65-110	Bride PN6/10 combiflange (bride PN 16 selon EN 1092-2)	65	185	118	130/145	-	4 x 14 / 19	-	80	80	С		
80-40	Bride PN10 (bride PN 16 selon EN 1092-2)	80	200	132	-	160	-	8 x 19	90	90	D		
80-90	Bride PN10 (bride PN 16 selon EN 1092-2)	80	200	132	-	160	-	8 x 19	90	90	D		
100-90	Bride PN10 (bride PN 16 selon EN 1092-2)	100	220	156	-	180	-	8 x 19	100	100	D		

Lien vers la fiche du produit